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Abstract. We analyse the spatio-temporal structure of wildfire ignitions in the St Johns River Water Management
District in north-eastern Florida. We show, using tools to analyse point patterns (e.g. the L-function), that wildfire
events occur in clusters. Clustering of these events correlates with irregular distribution of fire ignitions, including
lightning and human sources, and fuels on the landscape. In addition, we define a relative clustering index that
summarizes the amount of clustering over various spatial scales. We carry our analysis in three steps: purely
temporal, purely spatial, and spatio-temporal. Our results show that arson and lightning are the leading causes of
wildfires in this region and that ignitions by railroad, lightning, and arson are spatially more clustered than ignitions
by other accidental causes.
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Introduction

Optimal allocation of fire suppression resources depends on
the spatial and temporal nature of fire ignitions. Information
about clustering can be used by managers and law enforce-
ment to manage wildfires. Analyses of ignition sources show
spatial clustering (e.g. lightning, human populations) (Rorig
and Ferguson 1999; Hammer et al. 2004). Rorig and Ferguson
(1999) report that lightning fire ignitions are consistent with
the collocation of fuels and high lightning frequencies. Tem-
poral clustering of wildfires, whether deriving from multiple-
ignition lightning events, arson (Prestemon and Butry 2005),
or other sources, combined with favorable fuel and weather
conditions, can force suppression resource rationing across
space. Spatial clustering of fires, if not accompanied by
temporal clustering, would imply that firefighting resources
could be optimally prepositioned to reduce response times.
Spatial clustering can also indicate the presence of risk factors
(e.g. a local arsonist, high fuel loads); property crimes dis-
play spatio-temporal clustering (e.g. Surette 2002; Jacob and
Lefgren 2003;Townsley et al. 2003) and Butry and Prestemon
(2005) described spatial concentrations of wildland arson in
addition to temporal clustering. Suppression resource alloca-
tion would therefore be improved by better information on
the extent of clustering.

The objectives of this research are to (1) demonstrate a
method for quantifying spatial clustering and (2) evaluate

how the extent of clustering in wildfires differs across years
and among ignition sources. The method demonstrated is
the calculation of the L-function, a descriptor of the degree
of departure from complete spatial randomness in a point
process. The subject of our empirical analysis is wildfire inci-
dence over 21 years in the St Johns River Water Management
District (SJRWMD) of Florida. Our empirical application
begins by evaluating the long-run temporal variations in wild-
fire ignitions in the district over the period of analysis. We
continue by quantifying the extent of spatial clustering over
the 21-year period. This includes evaluating wildfire clusters
in the temporal aggregate and then quantifying their changes
over time. We separately model departure from randomness
using the L-function for arson, railroad, lightning, and other
accidental ignition sources. Departure from randomness for
each ignition source is evaluated against a 95% confidence
interval that is constructed by simulation. Our results demon-
strate that all ignition sources are spatially clustered; that this
clustering varies over time within ignition sources; and that
railroad, lightning, and wildland arson ignitions are the most
spatially clustered.

Methods

Spatio-temporal point processes

A spatio-temporal point process is a random collection of
points, where each point represents the time and location in
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space of an event. The realization of a spatio-temporal point
process is called a spatio-temporal point pattern. For example,
an event could be the occurrence of a fire, a lightning strike, a
volcanic eruption, an earthquake, the incidence of a disease,
or the sighting of a certain species. In our study, the point
pattern under investigation consists of wildfire ignitions in
the SJRWMD in Florida; that is, 31 693 wildfires during the
period 1981–2001.

Dissing and Verbyla (2003) analysed spatial patterns of
lightning strikes in Alaska, but they did not use tools from
spatio-temporal point processes. Podur et al. (2003) exam-
ined a spatial point pattern of wildfires caused by lightning
in Ontario, Canada, where lightning fires account for 35% of
ignitions and 85% of the area burned. Not surprisingly, they
rejected the hypothesis that lightning ignitions are randomly
distributed across space. They found that lightning fires
‘arrive in spatial and temporal clusters that can strain the
fire organization’. They also discussed reasons why lightning
fires might be clustered. We extend this type of analysis by
investigating whether all wildfire ignitions (by cause) occur
randomly, in clusters, or in some regular pattern. In addition,
we examine whether the spatial point pattern varies among the
causes of the wildfire (lightning, arson, accidents, railroad),
over time, or depends on wildfire size. In other words, we
perform a spatio-temporal analysis of wildfire ignitions. To
this aim, we define a simple relative clustering index (which
is described below).

A typical data analysis sequence begins with a test for com-
plete spatial randomness (CSR), followed by an attempt to
model any lack of spatial randomness. Nearest-neighbor dis-
tances provide an objective method for looking at small-scale
interactions between wildfires. The empirical distribution
function of the point-to-point nearest-neighbor distances can
be used for a comparison to a CSR process. If there is clus-
tering in the data, then we would expect to see an excess
of short-distance neighbors. If there is regularity in the data,
then there will be an excess of long-distance neighbors. In our
case, the empirical distribution function of the point-to-point
nearest neighbor distances reveals an excess of short-distance
neighbors (mostly between 0 and 1 km), thus indicating
clustering of the fire locations.

An alternative approach to the one above consists in
overlaying a grid on the spatial region, then comparing the
distance from the resulting grid nodes to their nearest neigh-
bors (wildfires). The empirical distribution function of these
node-to-point nearest-neighbor distances has an interpreta-
tion that is opposite to that above. An excess of long-distance
values is interpreted as clustering. In our case, the empirical
distribution function of the node-to-point nearest-neighbor
distances reveals an excess of long distances (mostly between
1 and 120 km), thus again indicating clustering of the fire
locations.

Two popular tools to describe departures from CSR are the
K-function proposed by Ripley (1976) and the L-function.

They are both used to describe how the interaction or spatial
dependence between events varies through space (or time).
The K-function K(h) at distance h is defined by:

K(h) = E(Number of events within distance h
of an arbitrary event)/λ,

where h is positive and E denotes the mathematical expec-
tation. The quantity λ is the intensity of the point process
(the mean number of events per unit area). Intuitively, the
K-function describes the expected number of events, relative
to λ, in a disc of radius h centered at an arbitrary event. One
advantage of the K-function is that its theoretical values are
known for several useful models of spatial point processes.
In particular, for a CSR process (i.e. a process with no spatial
dependence), the K-function is simply K(h) = πh2, the area
of a disc of radius h. Ripley’s K-function estimator, which
includes an adjustment for edge effects, can be compared to
the one expected for a CSR process. If the CSR hypothesis is
rejected, then there must be a tendency towards either clus-
tering or regularity, or the intensity of the process λ, i.e. the
number of events per unit area, must not be constant across
the region.

The L-function is defined as:

L(h) = √
K(h)/π.

Under CSR, L(h) is equal to h. Thus it is particularly sim-
ple to detect clustering by graphing L(h) against the distance
h. When the events are clustered, L(h) lies above the 45
degree line at short distances. As an example of how to inter-
pret the L-function, consider a case where the value of the
L-function at h = 10 m is L(10) = 15. This says that, start-
ing at an arbitrary fire, the number of fires within 10 m is
equal to the number that would be expected within 15 m if
the fires were spatially random and if the frequency of wild-
fires were constant in all areas of the region under study. We
used the statistical software R (R Development Core Team
2004) and functions in the spatial point processes library
spatstat (Baddeley and Turner 2005) to compute the empir-
ical L-function. Note that most software can compute the
K- and L-functions only for rectangular regions, which if
used improperly gives very misleading results. The spatial
point processes package spatstat allows the user to provide
the actual boundaries for an irregularly shaped window of
observation and computes the L-function over that window.
We also make use of the special command Kest.fft in order
to compute the K-function for our large datasets based on the
Fast Fourier Transform.

One feature of the L-function is that it depends on the
distance h, and therefore tells us the spatial scales at which
clustering occurs. In addition to this information, a unique
summary value that represents the information contained in
the L-function across spatial scales is desirable. We therefore
define a clustering index (CI ) by the area located between
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the estimated L-function from data and the one expected for
a CSR process (i.e. the sum of L(h)–h) over the possible dis-
tances h. Because our interest lies in understanding how this
clustering index changes over time, we further define a rel-
ative clustering index, RCI, as the clustering index minus its
average over time, which is then normalized by the average
clustering index over time. In other words, RCI will represent
departures (positive or negative) from the average cluster-
ing index over time. The normalization makes RCI easier to
compare in various settings, for example, if we want to study
the clustering of wildfire ignitions resulting from different
causes.

It seems reasonable to assume that fuel (in aggregate–land
cover) and heat (ignition source) are not homogeneous across
a landscape; thus we expect to find a non-CSR spatial point
process for wildfire ignitions. Fuel and heat sources may vary
over time as well as spatially, so we perform three analyses:
purely temporal, purely spatial, and spatio-temporal.

Data sources and background information

The SJRWMD comprises all or portions of 18 north-eastern
Florida counties and its size is ∼31 681 km2. Figure 1 depicts
a map of the SJRWMD with rivers, lakes, county bound-
ary lines, and five major cities: Jacksonville, St Augustine,
Gainesville, Daytona Beach, and Orlando.The St Johns River
runs north–south from Jacksonville to about half-way down
the center of the SJRWMD. In the middle of the SJRWMD is
Ocala National Forest (federal lands are excluded from this
analysis due to data constraints). Each year the SJRWMD
experiences on average 340 lightning wildfires, 445 arson
(incendiary) wildfires, and 724 accidental wildfires. Acci-
dental ignitions include those wildfires caused from camp-
fires, cigarettes, debris burning, equipment, railroad, and
children (children-caused fires deemed non-incendiary). It
also includes 139 miscellaneous wildfires and 158 cause-
unknown wildfires. These 1509 ignitions constitute 50 857
acres of wildfire each year on average (from 1981 to 2001).
Understanding the spatio-temporal structure of wildfire inci-
dence is important because of the potentially large economic
impacts; see Butry et al. (2001) for an analysis of the cost of
catastrophic wildfires.

The datasets used include (1) wildfire records from 1981
to 2001 and (2) an Arc/Info geographical information sys-
tem (GIS) coverage of the Public Land Survey (depicting
the location and boundaries of all cadastral sections within
Florida). Note that the spatial scale is at the section level
(1 section = 2.59 km2 = 1 mile2), whereas previous studies
have used data at a broader, county level scale (e.g. Prestemon
et al. 2002).

The Florida Division of Forestry provided data concern-
ing all wildfires generated on private and state-owned lands
over the calendar year period of 1981–2001. The wild-
fire data used for this analysis consists of wildfire ignition
date, location of ignition (township, range, and cadastral
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Jacksonville
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Fig. 1. Map of the St Johns River Water Management District with
rivers, lakes, county boundary lines, and five major cities.

section), and size (in acres), fuel type (palmetto–gallberry,
pine, swamp, hardwood, grass, muck, other), and cause
(lightning, arson, campfire, equipment, railroad, children,
miscellaneous, unknown, debris burning, cigarettes). For the
SJRWMD, there were 31 693 ignition points located by town-
ship, range, and cadastral section. The county of Volusia,
which contains Daytona Beach, experienced 4250 fire igni-
tions and a total of 249 838 acres of land burned, the largest
numbers among all counties in SJRWMD during 1981–2001.
The county of Duval, which contains Jacksonville, experi-
enced 2905 ignitions, the next largest number. The county of
Brevard, in the south of SJRWMD, reported 173 789 acres of
land burned, the next largest after Volusia. Figure 2 presents
a histogram of the logarithm (in base 10) of wildfire sizes
(area burned in acres) in SJRWMD during 1981–2001. The
logarithm transformation was used because the distribution
of wildfire sizes is very skewed. Indeed, note the large number
of very small fires, as well as a few very large fires.

The Florida Division of Forestry also provided a GIS cov-
erage of the Public Land Survey, which maps all township,
range, and cadastral sections in Florida. However, upon fur-
ther inspection, the coverage was found to be missing sections
listed in the wildfire record. These missing sections contain a
relatively small number of the wildfire ignitions, but are the
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Fig. 2. Histogram of the logarithm (in base 10) of wildfire sizes (area
burned in acres) in St Johns River Water Management District during
1981–2001. Note the large number of very small fires, as well as a few
very large fires.

location of roughly 37% of the wildfire area burned. A new
Arc/Info GIS coverage was created to identify and include
these missing sections (a Florida-wide Public Land Survey
System coverage was created from county level data compiled
by the Florida Geographic Data Library). The new coverage
is able to account (correctly locate) for 98% of the wildfire
ignitions and acres burned, meaning that 98% of the wildfires
(those recorded by the Florida Division of Forestry) have a
location that can be identified in the GIS. It also happens
that these wildfire ignitions account for 98% of the total area
burned.

In the present study we analyse the spatio-temporal struc-
ture of wildfire ignitions in the SJRWMD. In particular, we
show that wildfire events occur in clusters using tools to anal-
yse point patterns, e.g. the L-function. The occurrence of
clustering indicates spatial dependence or interaction, which
can be exploited to develop better models of fire size and
incidence; see, for example, Butry et al. (2004). Models for
wildfire incidence and size used by researchers and resource
managers can take quite different forms, depending on the
spatial and temporal scales of the data (Reinhardt et al. 2001).
We analyse wildfire ignitions at a fairly fine spatial scale, the
cadastral section of ignition, and on a continuous temporal
scale, the actual date. This allows us to investigate the dis-
tances at which clustering of fires is evident or not evident. In
the next section, we carry our analysis in three steps: purely
temporal, purely spatial, and spatio-temporal. Our results
show that arson and lightning are the leading causes of wild-
fires in this region, and that ignitions by railroad, lightning,
and arson are spatially more clustered than ignitions by other
accidental causes.

Analysis and results

Long-run temporal analysis

In this section we analyse wildfire ignitions in a purely tem-
poral context over the time period 1981–2001. Arson and
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Fig. 3. Temporal evolution of the number of wildfires ignitions
for arson causes (a) and for lightning causes (b) during the period
1981–2001 in the St Johns River Water Management District.

lightning ignitions are the leading causes of wildfire over
this period, so for this reason we investigate in detail the tem-
poral structure of wildfires caused by arson and lightning.
Graphing ignitions as a function of time in the SJRWMD for
arson causes (Fig. 3a) and for lightning causes (Fig. 3b), we
observe that 1981 had the largest number of wildfires (around
1250 fires due to arson, 800 due to lightning, and around
4000 total). The SJRWMD averages a total of ∼1500 wild-
fires annually. It is worth noting that many of these wildfires
are small (less than 1000 acres) (Fig. 2) and that the temporal
pattern of large wildfires (more than 1000 acres) is often dif-
ferent; see Butry et al. (2004) for details. We also find recent
years exhibiting elevated number of lightning ignitions. In
both cases, there seems to be an irregular pattern. But we
notice that years with a small number of fires are followed by
years with a large number of fires (Fig. 3).

A study of the temporal evolution of the area burned by
wildfires (in acres) during 1981–2001 caused by arson and
by lightning reveals that the largest individual arson fires
are ∼11 000 acres, whereas the largest individual lightning
caused fires are ∼60 000 acres. It is also interesting to note
that 1998 was a very exceptional year during which lightning
caused several very large wildfires (over a 6-week period in
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the summer of 1998, ∼500 000 acres burned in the SJRWMD,
primarily from lightning-caused fires). We get some further
insight about the temporal distribution of the area burned by
wildfires by computing the mean area burned of the wildfires,
as well as the median and the 90% quantile of area burned,
as a function of time (years). Because the median curve is
below the mean curve over time, we conclude that the annual
distribution is skewed to the right and that there are many
more small fires than large fires.

Spatial analysis

In this section, we analyse the wildfires in a purely spatial
context. If we draw a map of the locations of all the wildfires in
SJRWMD during 1981–2001, each point may represent sev-
eral fires because the data are collected at the section level.
A more informative map is obtained by hexagonal binning.
It is a grouping and reduction method typically employed on
large datasets to clarify the spatial structure. It can be thought
of as partitioning a scatter plot into larger units to reduce
dimensionality, while maintaining a measure of data density.
The groups or bins are used to make hexagon mosaic maps
colored or sized according to density. Rectangular or square
grids are often used in this context for image-processing
applications, but hexagons are preferable for visual appeal
and representation accuracy. Figure 4 describes a map of
wildfire counts for the period 1981–2001, obtained by hexag-
onal binning. The size of a hexagon is proportional to the
number of wildfires that occurred in a region of ∼6 km in
diameter. Note the higher concentrations of wildfires along
the eastern coast and in the north-western region of the
map. Also, we can detect higher concentrations of wildfires
around the major cities depicted in Fig. 1, with the exception
of Orlando. The causes of these wildfires are investigated
below.

Next, we investigate the spatial locations of wildfire igni-
tions for different years. Figure 5 depicts a map of wildfire
counts for 1981, 1985, 1988, and 1997, obtained by hexagonal
binning.Those 4 years are representative of different amounts
of clustering. For instance, 1981 and 1988 exhibit important
clustering, whereas 1997 seems much weaker. Note that high
amounts of clustering occur in different spatial regions across
those 4 years. Because the maps in Fig. 5 are also influenced
by the total number of fires during a given year, we also
compute the L-function for each of these years (Fig. 6). The
solid line represents the theoretical L-function under CSR
with dashed-line 95% confidence envelopes, whereas the dot-
ted line represents the empirical L-function. As we can see,
there is a clear departure from CSR towards clustering, the
strongest being in 1988. Note that the amount of clustering for
a given year changes also as a function of distance.The cadas-
tral sections are about 1 mile across (1.6 km). Even at this
scale clustering is evident. This means that, taking any fire as
a starting point, there are more fires within any specified dis-
tance than expected under complete spatial randomness. The
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Fig. 4. Map of wildfire counts for the period 1981–2001 in the
St Johns River Water Management District, obtained by hexagonal bin-
ning. The size of a hexagon is proportional to the number of wildfires
that occurred in a region of about 6 km in diameter.

degree of clustering seems to increase with radius. The over-
all amount of clustering across the various distances for each
year can be summarized by means of the clustering index.
The corresponding relative clustering index is computed in
the next section.

We also investigate the spatial locations of wildfire igni-
tions for different causes during the period 1981–2001.
Figure 7 depicts a map of wildfire occurrence by cause:
arson, lightning, accident, and railroad, obtained by hexag-
onal binning. All four wildfire causes indicate clustering in
various amounts. High numbers of wildfires are caused by
arson and by lightning, the latter occurring close to the sea
coast. Evidently, there are more wildfires caused by acci-
dents than by arson or lightning, because accident causes
are pooled from several different causes. In particular, the
railroad cause exhibits very strong clustering. This is to be
expected as those fires have to occur in the neighborhood of
railroad tracks in the SJRWMD. Fires caused by arson tend
to be more clustered around major cities. The clustering of
fires due to railroad and arson causes can be explained by
the fact that human activities are clustered in space – that is,
railroads are linear, multiple rail-sparking events may have a
common cause, and arson fires may have a common fireset-
ter with a limited spatial domain (Butry and Prestemon 2005;
Prestemon and Butry 2005).

Note again that high amounts of clustering occur in dif-
ferent spatial regions across those four causes. The maps in
Fig. 7 are also influenced by the total number of fires for a
given cause, and thus we compute the L-function for each
of them (Fig. 8). As we can see, there is a clear departure
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Fig. 5. Map of wildfire counts for the period 1981–2001 in the St Johns River Water Management District, obtained by hexagonal
binning for different years: (a) 1981, (b) 1985, (c) 1988, and (d) 1997. The size of a hexagon is proportional to the number of wildfires
that occurred in a region of about 6 km in diameter.

from CSR towards clustering, the strongest being for rail-
road causes. Here again, the amount of clustering for a given
cause changes as a function of distance. The overall amount
of clustering across the various distances for each cause can
be summarized by means of the clustering index. The clus-
tering indices for each fire cause are, in decreasing order
of clustering: CI = 855 for railroad; CI = 363 for lightning;
CI = 292 for arson; and CI = 98 for accident. The compu-
tations of those clustering indices are based on distances
ranging from 0 to 50 km. The relative clustering index for
arson, lightning, and accident (railroad belongs to this cat-
egory) are computed and visualized in Fig. 9. We see that
arson and lightning exhibit positive RCI, whereas acciden-
tal causes have a negative RCI. This means that, compared
with the overall average amount of clustering, the ones for

arson and lightning causes are above the mean, whereas the
one for accidental causes is below. Arson fires could occur in
spatial and temporal clusters due to exogenous factors such
as the presence of an arsonist and their serial behavior or
a copycat response by a number of arsonists in the vicinity
of other arson-ignited fires (Butry and Prestemon 2005). The
north-western part of the SJRWMD experiences far more than
its share of arson fires, and there are clusters of arson fires
near St Augustine and Gainesville.

Lightning-caused fires may be clustered in space because
lightning strikes are themselves clustered. In order to check
this hypothesis, we consider data about wildfire ignitions
caused by lightning in the SJRWMD region during June–
July 1998, as well as data about strong lightning (defined
here as lightning with high positive polarity) strike locations
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Fig. 6. The empirical L-function (dotted line) and theoretical L-function under CSR (solid line) as a function of
distance (in km) for wildfire ignitions in the St Johns River Water Management District, computed for four different
years: (a) 1981, (b) 1985, (c) 1988, and (d) 1997. Confidence envelopes (95%) for the theoretical L-function under
complete spatial randomness (CSR) are shown with dashed lines. All four plots indicate a clear departure from CSR
towards clustering.

in that region during the same period. The lightning strike
data were obtained from WeatherBank (Edmond, OK, USA)
and were collected through the National Lightning Detection
Network. It is believed that high positive polarity and wild-
fire ignitions are related; see, for example, Fuquay (1980,
1982). A map of these data is presented in Fig. 10. The
corresponding empirical L-function (dotted line) and theo-
retical L-function under CSR (solid line) as a function of
distance (in km) are depicted in Fig. 10 as well. In these fig-
ures it appears that the strong lightning strikes are actually
more highly clustered than the wildfire ignitions. Indeed, the
clustering indices (computed within a range of 50 km) are
CI = 544 for strong lightning strike locations and CI = 323
for wildfire ignitions caused by lightning. Particularly in the

southern region of the SJRWMD there are areas with dra-
matic clusters of lightning strikes. Some of the cluster areas
in the south-western part of the region did not have many
lightning-caused wildfires. This may not be unreasonable as
the fuel and landscape conditions must be right in order for a
lightning strike to result in an ignition. For instance, Rorig and
Ferguson (1999) report that lightning occurring outside the
area of precipitation (also called ‘dry’ lightning) is the most
common contributor to ignition. More puzzling are places
in the northern and coastal areas of the SJRWMD that had
lightning-caused wildfires but no strong lightning strikes.
This may be an indication that the relationship between strong
lightning and wildfire ignitions is weaker than suggested by
Fuquay (1980, 1982), at least in some spatial regions.
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Fig. 7. Map of wildfire counts for the period 1981–2001 in the St Johns River Water Management District, obtained by
hexagonal binning for different causes of wildfire ignitions: (a) arson, (b) lightning, (c) accident, and (d) railroad. The size of
a hexagon is proportional to the number of wildfires that occurred in a region of about 6 km in diameter.

Spatio-temporal analysis

In this section, we analyse wildfire ignitions in a spatio-
temporal context; that is, we want to see how spatial fea-
tures/clusters of the locations of the wildfires in SJRWMD
evolved over time from 1981 to 2001. Figure 4 depicted the
hexagonal binning of the locations of all wildfires during
1981–2001. Figure 5, on the other hand, depicts the hexago-
nal binning of the locations of wildfires for 4 years separately.
We see that 1981 has a lot of large clusters of wildfires, and
that the spatial structure of those clusters changed over time.
In particular, notice the higher concentrations of wildfires
along the eastern coast and in the north-western region of the
map. These remarks are also supported by plots of the evo-
lution of the L-function over time in Fig. 6, again indicating
clustering.

In order to better understand the evolution of the spatial
clustering of wildfires due to different causes over time, we
compute the relative clustering index for each year of the
period 1981–2001, and for the ignitions caused by arson,
lightning, and accidents separately. We plot the time series
of RCI values for: arson cause (Fig. 11a), lightning cause
(Fig. 11b), accident cause (Fig. 11c), and for all causes
together (Fig. 11d). It is interesting to note that positive RCI
values seem to be followed by negative RCI values. This
means that, after a series of years where the clustering of
wildfires ignitions is above average, there is typically a series
of years where the clustering is below average. This pattern
is especially visible for lightning causes. Also interesting is
the fact that, for accident causes of fire, it appears that the
RCI values are positive in recent years.
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Fig. 8. The empirical L-function (dotted line) and theoretical L-function under CSR (solid line) as a function
of distance (in km) for wildfire ignitions in the St Johns River Water Management District, computed for the
period 1981–2001 for different causes of ignitions: (a) arson, (b) lightning, (c) accident, and (d) railroad; 95%
confidence envelopes are shown as dashed lines. All four plots indicate a clear departure from complete spatial
randomness towards clustering.
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period 1981–2001 in the St Johns River Water Management District
for three different causes: arson, lightning, and accident.

Summary

In this paper, we have analysed the spatio-temporal structure
of wildfire ignitions in the St Johns River Water Management
District in Florida. We have used the L-function, a popular
tool for the analysis of point patterns, and defined a relative
clustering index that summarizes the amount of clustering
over various spatial scales. We found that wildfire events tend
to occur in clusters, at all spatial scales examined, and have
analysed the structure of the clustering from purely tempo-
ral or spatial points of view, as well as in a spatio-temporal
context.

If the intensity λ of the point process varies over the region,
e.g. if there is some sort of spatial trend in the frequency
of events, the point pattern is called ‘inhomogeneous’. An
L-function that deviates from CSR can indicate that events
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Fig. 10. Map of wildfire ignitions caused by lightning (a) and map of
strong lightning strike locations (c) in the St Johns River Water Manage-
ment District during the period June–July 1998.The respective empirical
L-function (dotted line) and theoretical L-function under CSR (solid
line) as a function of distance (in km) are depicted in parts (b) and (d).
In both cases, there is evidence of significant spatial clustering.
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Fig. 11. Time series of relative clustering index values during the period 1981–2001 for wildfire ignitions in the St Johns
River Water Management District for: (a) arson cause, (b) lightning cause, (c) accident cause, and (d) for all causes together.

interact or have some effect on each other, but it can also
indicate that there is a trend in the pattern of wildfire ignitions,
say from east to west, or it can indicate that some covariates
underlie the spatial patterns. If spatial interaction is present,
inclusion of information about the fire history of nearby areas
will be beneficial in statistical models of fire incidence and
improve the predictive ability of such models. Since the clus-
tering is evident at all spatial scales from ∼2 km on up, this
result should hold for fire data aggregated over various spatial
scales.

In addition, our study contains practical information for
managers, law enforcement, and fire agencies. Our results
have shown that arson and lightning are the leading causes
of wildfires in the SJRWMD region and that ignitions by
arson and railroad are spatially more clustered than igni-
tions by lightning or other accidental causes. Arson fires
clustered mainly in the north-western corner of the SJR-
WMD and near some of the major cities. Catastrophically
large wildfires are relatively rare, but those that occurred
were caused by lightning. Lightning fires occurred most fre-
quently in the eastern part of the SJRWMD near the central
coast.
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